Antimicrobial Resistance Profile and Detection of Extended Spectrum and Amp C β-Lactamase Resistance Genes in Escherichia coli Isolated from Diarrheic Children in Lafia, Nasarawa State, Nigeria

Main Article Content

A. Zakou
I. H. Nkene
R. H. Abimiku
I. Yahaya
B. E. Bassey
Y. B. Ngwai


Aims: This study evaluated the presence of extended spectrum β-lactamase (ESBL) and AmpC β-lactamase resistance genes in E. coli from stool of diarrheic children in some hospitals in Lafia metropolis, Nigeria.

Methodology: A total of 70 stool samples of children were obtained from Dalhatu Araf Specialist Hospital, Lafia, M & D Hospital, Olivet Medical Centre and Sandaji Medical Centre, Lafia. Escherichia coli were isolated and identified using standard microbiological methods. Antimicrobial susceptibility of the isolates was tested using Clinical and Laboratory Standards Institute (CLSI) method. The phenotypic detection of ESBL and AmpC β-lactamase production in some antibiotic resistant isolates were carried out using disc method. The molecular detections of ESBL and AmpC resistance genes were carried out using Polymerase Chain reaction (PCR) method.

Results: Of the 70 samples, the occurrence of E. coli was 100%. The isolates were highly resistant to ampicillin (97.14%), ciprofloxacin (90.00%), sulfamethoxazole/trimethoprim (84.29%), streptomycin (78.57%), amoxicillin/clavulanic acid (70.00%); moderate to gentamicin (38.57%), ceftazidime (37.14%) and cefotaxime (30.00%); and less resistant to cefoxitin (15.71%) and imipenem (8.57%). Twenty-one (30.00%) isolates were jointly resistant to both cefotaxime and ceftazidine. Of this number, 66.67% (14/21) were phenotypically confirmed ESBL producers; and the occurrences of ESBL resistance genes were: 7.14% (SHV), 42.86% (CTX-M) and 50.00% (TEM). Out of 11isolates resistant to cefoxitin, 4(36.36%) were phenotypically confirmed as AmpC β-lactamase producers; and the occurrence of AmpC genes were: 50.00% (CIT), 25.00% (FOX) and 25.00% (MOX).

Conclusion: The isolates were least resistant to imipenem and cefoxitin and highly resistant to ampicillin, ciprofloxacin and sulfamethoxazole/trimethoprim. TEM and CTX-M ESBL genes were more frequent than SHV. CIT AmpC gene was more frequent than FOX and MOX.

Escherichia coli, extended spectrum, AmpC, β-lactamase, stool, diarrhea, children

Article Details

How to Cite
Zakou, A., Nkene, I. H., Abimiku, R. H., Yahaya, I., Bassey, B. E., & Ngwai, Y. B. (2020). Antimicrobial Resistance Profile and Detection of Extended Spectrum and Amp C β-Lactamase Resistance Genes in Escherichia coli Isolated from Diarrheic Children in Lafia, Nasarawa State, Nigeria. South Asian Journal of Research in Microbiology, 7(3), 15-27.
Original Research Article


Abimiku RH, Ngwai YB, Nkene IH, Tatfeng YM. Molecular detection of diarrheagenic pathotypes of Escherichia coli from diarrheic patients in Keffi, Nigeria. Microbioz Journals, Journal of Microbiology and Biomedical Research. 2016;2(3):1-6.

Walker CL, Aryee MJ, Boschi-Pinto C, Black RE. Estimating diarrhea mortality among young children in low- and middle-income countries. PLOS ONE. 2012;7:29151.

Abdulkareem SS, Al-yassini HO, Muttaleb A, Nktel FNA, Nesseralla A, Noor SK, Al-Khafaji RKM, Noor MN. Occurrence of AmpC MBL, CRE and ESBL among diarrhegenic Escherichia coli recovered from Infantile diarrhea, Iraq. International Journal of Microbiology, Genetics and Molecular Biology Research. 2016;2(2):21-29.

Fody AM, Boubou L, Moussa A, BawaHI, Konate A, Yaou C, Zongo C, Salaou C, Daouda A, Sidikou R, Traoure AB, Barro N. Phenotypic Detection of ESBL in multidrug resistant E. coli from clinical isolates in Niamey, Niger. African Journal of Microbiology Research. 2017;11(18):713-717.

WHO; 2012. (; Accessed: October 31st, 2016).

Ngwai YB, Gyar SD, Pennap GRI, Makut MD, Ishaleku D, Corosi SM, Nkene IH, Uzoamaka N. Antibiogram of non-sorbitol fermenting Escherichia coli from sources and stool in Keffi, Nigeria. NSUK Journal of Science and Technology. 2014;4.

Holten KB, Onusko EM. "Appropriate prescribing of oral beta-lactam antibiotics". American Family Physician. 2000;62(3):611–20.

Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39(10):721-728.

Page MI, Badarau A. The mechanisms of catalysis by metallo beta-lactamases. Bioinorganic Chemistry and Applied. 2008;576297.

Bush K. Alarming β-lactamase mediated resistance in multiple resistance enterobactericea. Lurr. Opin. Microbiology. 2010;13:558-564.

Mollahaliloglu S, Alkan A, Donertas B, Ozgulcu S, Akici A. Assessment of antibiotic prescribing at different hospitals and primary health care facilities Saudi Pharm J. 2013;21(3):281–291.

Daumann LJ, Schenk G, Gahan LR. Metallo‐β‐lactamases and Their Biomimetic Complexes. European Journal of Inorganic Chemistry. 2014;18:2856-2982.

HarrisPN, Ferguson JK. Antibiotic therapy for inducible AmpC beta-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? International Journal of Antimicrobial Agents. 2012;40:297-305.

Day MJ, Rodriguez I, Van EZA, Dierikx C, Kadlee K, Schink A. Diversity of ST, Plasmids and ESBL genes among E. coli from humans, animals and food in germany, the Netherlands and the UK . Journal of Antimicrobial Chemotherapy. 2016;10:485.

Ferjani S, Saidani M, Amine FS, Boubaker IBB. Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrumβ-lactamase-producing Enterobacteriaceae in a Tunisian hospital. Microbial Drug Resistance. 2015;21(2):158–166.

Dashti AA, West P, Paton R, Amyes SG. Characterization of extended spectrum beta-lactamase (ESBL)-producing Kuwait and UK strains identified by the Vitek system, and subsequent comparison of the Vitek system with other commercial ESBL-testing systems using these strains. Journal of Medical Microbiology. 2006;55:417-421.

Fang H, Ataker F, Hedin G, Dornbusch K. Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities. Journal of Clinical Microbiology. 2001-2006;46:707–712.

Sedighi I, Mohammad RA, Ali R, Zahra K, Mohammad YA. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes among Clinical Isolates of Uropathogenic Escherichia coli in Children. Jundishapur Journal of Microbiology. 2015;8(7):1-6.

Jacoby GA. AmpC beta-lactamases. Clinical Microbiology Review. 2009;22:161-82.

Jameel N, Ejaz H, Zafar A, Amin H. Multidrug resistant AmpC β-lactamase producing Escherichia coli isolated from a paediatric hospital. Pak. J. Med. Sci. 2014;30(1):181–184.

El-Sharif A, Ali R. Molecular detection of TEM Type β lactamase producing Escherichia coli from diarrheic Egyptian children. Arch. Clin. Microbiol. 2012;3(5):3.

Ali MMM, Ahmed S, Klena JD, Mohamed ZK, Moussa TAA, Ghenghesh KS. Enteroaggregative Escherichia coli in diarrheic children in Egypt: Molecular characterization and antimicrobial susceptibility. The Journal of Infection in Developing Countries. 2014;8(5):589-596.

Alizade H, Fallah F, Ghanbarpour R, Aflatoonian MR, Goudarzi H, Sharif H.Phylotyping of blaCTX-M-15 gene in extended spectrum beta lactamase producing Escherichia coli isolates from clinical samples in Iran. HVM Bioflux. 2014;6(4):169-173.

Ogefere HO, Ibadin EE, Omoregie R, Ilerhunwa I. Prevalence of Extended Spectrum β-Lactamase among Diarrheagenic Strains of Escherichia Coli among Children in Yenagoa, Nigeria. Sokoto Journal of Medical Laboratory Science. 2016;1(1):7-12

Bai L, Wang L, Yang X, WangJ,Gan X, Wang W, Xu J, Chen Q, Lan R, Fanning S, Li F. Prevalence and Molecular Characteristics of Extended-Spectrum β-Lactamase Genes in Escherichia coli Isolated from Diarrheic Patients in China. Front. Microbiology. 2017;8:1-8.

Mandal A, Sengupta A, Kumar A, Singh UK, Jaiswal AK, Das P, Das S. Molecular Epidemiology of Extended-Spectrum β-Lactamase-Producing Escherichia coli Pathotypes in Diarrheal Children from Low Socioeconomic Status Communities in Bihar, India: Emergence of the CTX-M Type. Infectious Diseases, (Auckl). 2017;10:1-11

Rabia AR, Wamba PN, Kimera SI, Mdegela RH, Mzulla A, Kahmis FA. Phenotypic Characterisation of Escherichia coli Isolates from Fish, Diarrheic and Healthy Children in Zanzibar, Tanzania. International Journal of Tropical Disease and Health. 2017;24(3):1-11.

Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RMR. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nature Microbiol. 2018;3:1063-1073.

Xu Y, Sun H, Bai X, Fu S, Fan R, Xiong Y. Occurrence of multidrug‑resistant and ESBL‑producing atypical enteropathogenic Escherichia coli in China. Gut Pathogens. 2018;10:8.

Okeke IN, Fayinka ST, Lamikanra A. Antibiotic resistance in Escherichia coli from Nigerian students, 1986-1998. Emerg. Infec. Dis. 2000;6:393–396.

Aibinu IE, Peters RF, Amisu KO, Adesida SA, Ojo MO, Odugbemi T. Multidrug resistance in E. coli O157 strains and the public health implication. J. Am. Sci. 2007;3:22–33.

Ifeanyi CIC, Ikeneche NF, Bassey BE, Morabito S, Graziani C, Caprioli A (2017). Molecular and phenotypic typing of enteropathogenic Escherichia coli isolated in childhood acute diarrhea in Abuja, Nigeria. J. Infect. Dev. Ctries. 2017;11(7):527-535.

Ugwu MC, Edeani GI, Ejikeugwu CP, Okezie U, Ejiofor SO. Antibiotic Susceptibility Profile of Escherichia coli and Salmonella Causing Childhood Diarrhoea in Awka Municipality, South-eastern Nigeria. Clin. Microbiol. 2017;6:277.

Ifeanyi CIC, Ikeneche NF, Bassey BE, Nazek AG, Akpa AC, Isu RN. Characterization of Toxins and Colonization Factors of Enterotoxigenic Escherichia coli Isolates from Children with Acute Diarrhea in Abuja, Nigeria. Jundishapur Journal of Microbiology. 2018;11(1):64269.

Ding H, Yang Y, Lu Q, Wang Y, Chen Y, Deng L. The prevalence of plasmid-mediated AmpC beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. European Journal of Clinical Microbiology and Infectious Diseases. 2008;27:915-21.

Cheesebrough M. Medical Laboratory Manual for Tropical Countries. Cambridge: Cambridge University Press. 2006;49-97.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 27nd Informational Supplement M100-S22. Wayne, Pa, USA; 2017.

Jarlier V, Nicolas MH, Fournier G. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Review of Infectious Diseases. 1998;10:867-868.

Nkene IH, Ngwai YB, Omede MU, Samuel J, Envuladu EY, Abimiku RH. Extended spectrum beta-lactamase producing Escherichia coli from urine of symptomatic and asymptomatic subjects in Keffi, Nigeria. International Journal of Research Studies in Biosciences. 2015;3(12):1-5.

Amaya E, Reyes D, Vilchez S, Paniagua M, Miuby R, Nord CE, Weintraub A. Antibiotic Resistance Patterns of Intestinal E. coli isolates from Nicaraguan Children. Journal of Medical Microbiology. 2010;216-222.