The Fungal Microbiota of the Digestive Tract of the Chagas Disease Vectors Triatoma infestans Klug, 1834 and Panstrongylus megistus Burmeister, 1835

Main Article Content

Ingrid dos Santos da Silva
Mônica de França Guedelha
Cíntia Alves da Silva
Lara Cristina Santos
Angela Cristina Verissimo Junqueira
Aurea Maria Lage de Moraes


Chagas is a neglected disease, one of Brazil’s main medical and social problems and a serious public health problem in the Americas, with more recent occurrences in non-endemic countries outside of the Americas. Research into the microbiota of triatomines is relevant because of its potential role in vector competence and as a proposed biological control strategy. Stressing a possible insect-fungal interaction in the development of Trypanosoma cruzi, and considering the lack of studies on the subject, we analyzed the fungal microbiota of the digestive tract of two species considered important vectors of Trypanosoma cruzi: Triatoma infestans and Panstrongylus megistus. Specimens were dissected, digestive tracts macerated and contents serially diluted. Each aliquot was seeded in three culture media. The plates were incubated in type B.O.D. climate chambers for 21 days, after which isolated colonies were morphological characterized and identified. There have been few published studies on the fungal microbiota of the triatomine digestive tract. Comparing the results found here with existing data reveals that the genera Aspergillus and Penicillium are commonly found in the digestive tract of the studied triatomines. Among the several genera identified, the species found in the highest percentages were Aspergillus flavus, Paecilomyces variotii, Penicillium waksmanii, Penicillium raistrickii and Penicillium fellutanum. Quantitative differences in the number of isolated fungal strains were observed according to sex and nymphal stage of the vector. The present findings corroborate those found in the literature, showing that there is a natural fungal microbiota in triatomines. Data revealing quantitative differences in isolated fungal strains found in male, female and nymphs reinforce the idea that their presence is related to physiology and fasting resistance. The secondary metabolite-producing fungi isolated in this work have in their biology great potential to be tested with regard to the establishment of T. cruzi in the digestive tract of its vector.

Microbiota, fungal, chagas disease, fungus, vector, Trypanosoma cruzi.

Article Details

How to Cite
Silva, I. dos S. da, Guedelha, M. de F., Silva, C. A. da, Santos, L. C., Junqueira, A. C. V., & Moraes, A. M. L. de. (2020). The Fungal Microbiota of the Digestive Tract of the Chagas Disease Vectors Triatoma infestans Klug, 1834 and Panstrongylus megistus Burmeister, 1835. South Asian Journal of Research in Microbiology, 8(1), 13-21.
Original Research Article


Coura JR, Junqueira ACV, Boia MN, Fernandes O, Bonfante C, Campos JE, et al. Chagas disease in the Brazilian Amazon: IV. A new cross-sectional study. Rev Inst Med Trop. 2002;44:159-165.

Coura JR, Viña, PA. Chagas disease: A new worldwide challenge. Nature. 2010; 465:6-7.

Coura JR, Viña PA, Junqueira ACV. Ecoepidemiology, short history and control of chagas disease in the endemic countries and the new challenge for non-endemic countries. Mem Inst Oswaldo Cruz. 2014;109:856-62.

In: World Health Organization. Chagas disease (American trypanosomiasis); 2019. Available: Accessed August 28, 2019.

Requena-Méndez A, Aldasoro E, De Lazzari E, Sicuri E, Brown M, Moore DA. Prevalence of chagas disease in Latin-American migrants living in Europe: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2015;9:1-15.

Martins-Melo FR, Ramos Jr AN, Alencar CH, Heukelbach J. Prevalence of chagas disease in Brazil: A systematic review and meta-analysis. Acta Trop. 2014;130:167-74.

De Oliveira WK, Brito SMF, Pereira GFM, De Abreu AL, Rohlfs DB, Duarte E, et al. Doença de chagas Aguda e distribuição espacial dos triatomíneos de importância epidemiológica, Brasil 2012 a 2016. Boletim Epidemiológico Paulista (Online) Ministério da Saúde. 2007;4:08-12.

Coura JR, Dias JCP. Epidemiology, control and surveillance of chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009;104:31-40.

Hernández YH, González RG. Revisión de la subfamilia Triatominae (Hemiptera: Reduviidae) en Cuba. Bol Malariol Salud Ambient. 2006;47:107-13.

Jurberg J, Rodrigues JMS, Dale C, Lamas Jr VD, Peixoto SR, Da Silva JVT, et al. Atlas iconográfico dos triatomíneos do Brasil (vetores da doença de chagas). 3. ed. Rio de Janeiro: Instituto Oswaldo Cruz; 2017.

Massad E. Review article the elimination of chagas’ disease from Brazil. Epidemiol Infect. 2008;136:1153–64.

Silveira AC, Dias JCP. The control of vectorial transmission. Rev Soc Bras Med Trop. 2011;44:52-63.

Pessoa GCD, Vinãs PA, Rosa ACL, Diotaiuti L. History of insecticide resistance of Triatominae vectors. Rev Soc Bras Med Trop. 2015;48:380-89.

Alexander B, Maroli M. Control of Phlebotomine sandflies. Med Vet Entomol. 2003;17:1-18.

Valled D, Pimenta DN, DA Cunha RV. Dengue: Teorias e práticas.Rio de Janeiro: FIOCRUZ; 2015.

Duncan JT. On a bactericidal principle present in the alimentary canal of insects and arachnids. Parasitology 1926;18:238-52.

Goodfellow M, Alderson G. The actinomycete-genus Rhodococcus: A home for the ‘Rhodochrous’ complex. Microbiology. 1977;100:99-122.

Isac E, Alves RDBDN, Rocha APD, Costa Júnior OO, Santos AHD. Biologia do Triatoma costalimai (Verano & Galvão, 1959) (Hemiptera, Reduvudae). Rev Patol Trop. 2000;29:233-40.

Wigglesworth, VB. Memoirs: The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). J. Cell Sci. 1936;2:91-121.

Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the Triatominae and their potential use in control of chagas disease transmission. Annu Rev Entomol. 2002;47:123-41.

Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21: 568-72.

Garcia ES, Genta FA, Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010;26:499-505.

Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One. 2012;7:1-8.

Da Mota FF, Marinho LP, De Carvalho Moreira CJ, Lima MM, Mello CB, Garcia ES, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of chagas disease. PLoS Negl Trop Dis. 2012;6.

Dias JCP, Ramos Jr AN, Gontijo ED, Luquetti A, Shikanai-Yasuda MA, Coura JR, et al. II Consenso Brasileiro em doença de chagas, 2015. Epidemiol Serv Saude. 2016;25:7-86.

Moraes AML, Junqueira ACV, Giordano CM, Oliveira PD. Micobiota do trato digestivo de triatomíneos silvestres vetores do Trypanosoma cruzi. Rev Bras Parasitol Vet. 1993;2:45-46.

Moraes AML, Junqueira ACV, Giordano CM. Aspergilli from the digestive tract of Brazilian triatomids mycotaxon (USA). 1998;66:231-41.

Moraes AML, Junqueira ACV, Celano V, Costa GL, Coura JR. Fungal flora of the digestive tract of Rhodnius prolixus, Rhodnius neglectus, Diptelanogaster maximus and Panstrongylus megistus, vectors of Trypanosoma cruzi, chagas, 1909. Braz J Microbiol. 2004;35:288-91.

Marti GA, García JJ, Cazau MC, López Lastra CC. Flora fúngica de tractos digestivos en Triatoma infestans (Hemiptera: Reduviidae) en Argentina. Bol Soc Argent Bot. 2007;42:189-93.

Moraes AML, De Figueiredo AR, Junqueira ACV, Costa GL, Aguiar RK, De Oliveira PC. Fungal flora of the digestive tract of Panstrongylus megistus (Reduviidae) used for experimental xenodiagnosis of Trypanosoma (schizo tripanum) cruzi chagas, 1909. Rev Iberoam Micol. 2001; 18:79-82.

Moraes AML, Junqueira ACV, Costa GL, Celano V, Oliveira PC, Coura JR. Fungal flora of the digestive tract of 5 species of triatomines vectors of Trypanosoma cruzi, chagas 1909. Mycopathologia 2001;151: 41-48.

Junqueira ACV, Goncalves TCM, Moreira CJC. Manual de capacitação na detecção de Trypanosoma cruzi para microscopistas de malária e laboratoristas da rede pública. In: Coura JR, editor. Rio de Janeiro: Fiocruz; 2010.

Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. 4th ed. St. Paul, MN: APS Press;1998.

De Hoog GS, Guarro J. Atlas of clinical fungi. Baarn, The Netherlands: Centraalbureau voor Schimmelcultures; 1995.

De Hoog GS, Guarro J, Gené J, Figueras MJ. Atlas of clinical fungi Utrecht: Centraalbureau voor Schimmelcultures. 2000;2.

McGinnis MR. Laboratory handbook of medical mycology. New York: Academic Press; 1980.

Rivalier E, Seydel S. Nouveau procedé de culture sur lames gélosés appliqué a l’étude microscopique de champignos deteignes. Ann Parasitol.1932;10:444-52.

Gerlach W, Nirenberg H. The genus Fusarium-a pictorial atlas. Berlin-Dahlem: Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirts-chaft; 1982.

Klich MA. Identification of Aspergillus species. Utrech, The Netherlands: Centraalbureau Voor Schimmelcultures; 2002

Pitt JI. A laboratory guide to commom Penicillium species. 3th ed. Australia: Food Science Australia a Joint Venture of CSIRO and AFISC; 2000.

Raper KB, Fennell DI. The genus Aspergillus. Baltimore: The Williams & Wilkins Co.; 1965.

Rifai MA. A revision of the genus Trichoderma. Surrey: Mycological papers. 1969;116:1-56.

Samson RA. Paecilomyces and some allied Hyphomycetes. Stud Mycol 1974;6: 1-119.

Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78: 343-71.

Carrión G, Bonet A. Mycobiota associated with the coffee berry borer (Coleoptera: Scolytidae) and its galleries in fruit. Ann Entomol Soc Am. 2014;97:492-99.

Gama FC, Teixeira CAD, Garcia A, Costa JNM, Lima DKS. Diversidade de fungos filamentosos associados a Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) e suas galerias em frutos de Coffea canephora (Pierre). Neotrop Entomol. 2006;35:573-78.

Peterson SW, Pérez J, Vega FE, Infante F. Penicillium brocae, a new species associated with the coffee berry borer in Chiapas, Mexico. Mycologia 2003;95:141-47.

Ferraz RE, Lima PM, Pereira DS, Freitas CC, Feijó F. Fungi microbiot of Melipona subnitida Ducke (Hymenoptera: Apidae). Neotrop Entomol. 2008;37:345-46.

Pereira EDS, Ferreira RL, Hamada N, Lichtwardt RW. Trichomycete fungi (Zygomycota) associated with mosquito larvae (Diptera: Culicidae) in natural and artificial habitats in Manaus, AM Brazil. Neotrop Entomol. 2005;34:325-29.

Sales MSN, Costa GL, Bittencourt VREP. Isolation of fungi in Musca domestica Linnaeus, 1758 (Diptera: Muscidae) captured at two natural breeding grounds in the municipality of Seropédica, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz. 2002;97:1107-10.

Azambuja P, Feder D, Garcia ES. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol. 2004;107:89-96.

Castro DP, Seabra SH, Garcia ES, De Souza W, Azambuja P. Trypanosoma cruzi: Ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol. 2007;117:201-07.

Schlein Y, Polacheck I, Yuval B. Mycoses, bacterial infections and antibacterial activity in sandifies (Psychodidae) and their possible role in the transmission of leishmaniasis. Parasitology. 1985;90:57-66.

Ramos‐Ligonio A, López‐Monteon A, Trigos Á. Trypanocidal activity of ergosterol peroxide from Pleurotus ostreatus. Phytother Res. 2012;26:938-43.

Alexandre TR, Lima ML, Galuppo MK, Mesquita JT, Do Nascimento MA, Dos Santos AL, et al. Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria. J Venom Anim Toxins Incl Trop Dis. 2017; 23:30.

Campos FF. Isolamento e identificação de substâncias bioativas produzidas por fungos endofíticos associados à Piptadenia adiantoides (Fabaceae). Minas gerais. Tese [Doutorado em Ciências Biológicas] -Universidade Federal de Minas Gerais; 2009.

Monteiro MCP. Identificação de fungos dos gêneros Aspergillus e Penicillium em solos preservados do cerrado. Lavras. Tese [Mestrado em Microbiologia Agrícola) – Universidade Federal de Lavras; 2012.

Bugni TS, Janso JE, Williamson RT, Feng X, Bernan VS, Greenstein M. et al. Dictyosphaeric acids A and B: New decalactones from an undescribed Penicillium sp. Obtained from the Alga Dictyosphaeria v ersluyii. J Nat Prod. 2004; 67:1396-99.

Chen M, Shao CL, Fu XM, Kong CJ, She ZG, Wang CY. Lumazine peptides penilumamides B–D and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus. J Nat Prod. 2014;77:1601-06.

Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J. Anthraquinone, cyclopenta-none, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J Nat Prod. 2010;73:1507-11.

Cota BB, Rosa LH, Caligiorne RB, Rabello ALT, Almeida Alves TM, Rosa CA, et al. Altenusin, a biphenyl isolated from the endophytic fungus Alternaria sp., inhibits trypanothione reductase from Trypanosoma cruzi. FEMS Microbiol Lett. 2008;285:177-82.

Costa MJ, Perondini ALP. Resistência do Triatoma brasiliensis ao jejum. Rev Saude Publica. 1973;7:207-17.

Friend WG, Smith JJB. La fisiología de los triatomínos con especial referência a la alimentacion por sangue. In: Carcavalho RV, et al. (Eds.) Factores biológicos y ecológicos en la enfermedad de Chagas. Argentina, Organización Panamericana de la Salud. 1978:55-72.

Almeida CE, Francischetti CN, Pacheco RS, Costa J. Triatoma rubrovaria (Blanchard, 1843) (Hemiptera-Reduviidae-Triatominae) III: Patterns of feeding, defecation and resistance to starvation. Mem Inst Oswaldo Cruz. 2003;98:367-72.

Daflon-Teixeira NF, Carvalho-Costa FA, Chiang RG, Lima MM. Influence of blood meal and mating in reproduction patterns of Triatoma brasiliensis females (Hemiptera: Reduviidae) under laboratory conditions. Mem Inst Oswaldo Cruz. 2009; 104:1031-34.