Global Trends of Emerging Infectious Diseases and the Impacts on Biodiversity: Spillover, Diversity and the Role of Bats in Evolutionary Relationships as Zoonotic Virus Reservoirs

Main Article Content

Diniz Pereira Leite Júnior
Elisangela Santana de Oliveira Dantas
Gisela Lara da Costa
Ronaldo Sousa Pereira
Mário Mendes Bonci
Regina Teixeira Barbieri Ramos
Rodrigo Antônio Araújo Pires
Marcia de Souza Carvalho Melhem
Paulo Anselmo Nunes Felippe
Claudete Rodrigues Paula

Abstract

Introduction: It is possible that the evolution of man is associated with manifestations of microscopic beings that have accompanied him since ancient times. Emerging infectious diseases have been warning for decades that habitat fragmentation and degradation, antropization effects, animal trafficking increase the risk of diseases spreading from wildlife to human populations.

Aims: The purpose of this study was to review the current events about the pandemics that occurred on the planet and the current situation of bat involvement, their high degree of ecological plasticity that these beings present with the emergence and spread of viruses.

Methodology: Review the current knowledge about viral diversity, host condition and possible mammalian reservoirs in the face of pandemics and the close relationship of bats with humans and other possibly incriminated species. Given the epidemics of the last century, it is possible to observe that the increased interaction between humans and wild animals has facilitated the emergence of viral strains of importance for public health.

Results: Given the reports argued by the scientific community, bats may be responsible for the air cycle of viral diseases, being considered of great importance in the study of epidemiology. Conclusion: The SARS-CoV-2 epidemic has come to test the ability of humans to face a threat that may be repeated in the future. As part of nature, bats cannot be framed as precursors of viral agents. The knowledge obtained, associated with investment in science, research and education, will put us one step ahead of future pandemic events.

Keywords:
Epidemics, Chiroptera, conservation, virus, COVID-19

Article Details

How to Cite
Júnior, D. P. L., Dantas, E. S. de O., Costa, G. L. da, Pereira, R. S., Bonci, M. M., Ramos, R. T. B., Pires, R. A. A., Melhem, M. de S. C., Felippe, P. A. N., & Paula, C. R. (2021). Global Trends of Emerging Infectious Diseases and the Impacts on Biodiversity: Spillover, Diversity and the Role of Bats in Evolutionary Relationships as Zoonotic Virus Reservoirs. South Asian Journal of Research in Microbiology, 8(3), 1-26. https://doi.org/10.9734/sajrm/2020/v8i330192
Section
Review Article

References

Ujvari SC. The history of humanity told by viruses, bacteria, parasites and other microorganisms. São Paulo; Contexto. 2011;202.

Balboni A, Battilani M, Prosperi S. The SARS-like coronavirus: The role of bats and evolutionary relationships with SARS coronavirus. Microbiologica-quarterly J. Microbiol Sci. 2012;35:1.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10.
Available:https://doi:10.1038/ nature06244

Lafferty KD. The ecological of climate change and infectious diseases. Ecology. 2009;90(4):888-900.
Available: https://doi:10.1890/08-0079.1

Woolhouse MEJ, Gaunt E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 2007;33:1–12.
Available: https://doi:10.1080/1040841060 1172164

Voigt CC, Kingston T. Bats in the Anthropocene: Conservation of bats in a changing world. Springer Chan Heidelberg New York Dordrecht London; 2016.
Available: https://10.1007/978-3-319-252 20-9

Available: https://link.springer.com/content/ pdf/ 10.1007%2F978-3-319-25220-9.pdf

USA. U.S. Agency for International Development - USAID. Pandemic Influenza and Other Emerging Threats. Emergin Pandemic Threats. Washington; 2009.
Available:https://www.usaid.gov/sites/default/files/documents/1864/PIOETFact%20SheetApril2013.pdf
Access 16 Mai 2020

Souza MJ. One health: Zoonoses in the exotic animal practice. Vet Clin North Am Exot Anim Pract. 2011;14(3):421-6.
Available:https;//doi:10.1016/j.cvex.2011.05.007

Jones KE, Patel NG, Levy MA, Soreygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature Letters. 2008;451
Available: https://doi:10.1038/nature06536

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I Ziebuhr J. Coronaviridae study group of the international committee on taxonomy of viruses. Consensus statement. The species Severe acute respiratory syndrome related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiol. 2020;5:536-544.
Available: https://doi.org/10.1038/s41564-020-0695-z

Shereen MA, Khan S, Kazmi A, Bashi N Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronavirus. J Adv Res 2020;24:91–98.
Available: https://doi.org/10.1016/j.jare.20 20.03.005

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Roujian L, Xiang Z, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W.J, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W. Shi W, Tan W. Genomic characterization and epidemiology 2019 novel coronavirus: Implications virus origins and receptor binding. Lancet; 2020.
Available: https://doi:10.1016/S01406736 (20)30251-8

Santos NSO, Romanos MTV, Wigg MD. Human Virology. 3rd. Ed. Guanabara Koogan. 2015;606.

Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001:29:356(1411):983–989.
Available:https://doi: 10.1098/rstb.2001.0888

Zambon M. Influenza and other emerging respiratory viruses. Medicine. 2014;42(1): 45-51.
Available:https://doi:10.1016/j.mpmed.2013.10.017

Monto AS, Webster RG. Influenza pandemics: history and lessons learned. In: Webster RG, Monto AS, Braciale TJ, Lamb RA, editors. Textbook of influenza. 2nd ed. Oxford: Wiley Blackwell. 2013;20-34.

Taubenberger JK, Baltimore D, Doherty PC, Markel H, Morens DM, Webster RG, Wilson IA. Reconstruction of the 1918 Influenza Virus: Unexpected Rewards from the Past. Mbio. 2012;3(5).
Available:https://doi.org/10.1128/mbio.00201-12

Levine AJ, Enquist LW. History of virology. In Fields virology (eds B.N. Fields, D.M. Knipe & P.M. Howley), 5th edn. Philadelphia, PA:Lippincott Williams & Wilkins. 2007;565–604.

Quammen D. Spillover: Animal infections and the next human pandemic. Norton WW, Company, Inc.: New York. 2012;592.

Kilpatrick AM. Globalization, land use, and the invasion of West Nile virus. Science. 2011;21334(6054):323-7.
Available: https://doi:10.1126/science.120 1010

Gray TJ, Burrow JN, Markey PG, Whelan PI, Jackson J, Smith DW, Currie BJ. West nile virus (Kunjin subtype) disease in the northern territory of Australia - a case of encephalitis and review of all reported cases. Am J Trop Med Hyg. 2011;85(5):952-6. Review. Erratum in: Am J Trop Med Hyg. 2012;86(1):181.
Available: https://doi:10.4269/ajtmh.2011. 11-0165

Felippe PA, da Silva LH, Santos MM, Spilki FR, Arns CW. Genetic diversity of avian infectious bronchitis virus isolated from domestic chicken flocks and coronavirus from feral pigeons in Brazil between 2003 and 2009. Avian Dis. 2010;354(4):1191-6.
Available:https://doi:10.1637/9371-041510-Reg.1

Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez JP, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438(7068):575-6.
Available:https://doi:10.1038/438575a

Rovid A. Ebola and Marburg virus infections. Translated and adapted to the situation in Brazil by Mendes R.; 2016.
Available: http://www.cfsph.iastate.edu/ DiseaseInfo/factsheetspt.php?lang=pt
Access 20 Abr 2020.

Goldstein T, Anthony SJ, Gbakima A. Bird BH, Bangura J, Tremeau-Bravard A, Belaganahalli MN, Wells HL, Dhanota JK, Liang E, Grodus M, Jangra RK, DeJesus VA, Lasso G, Smith BR, Jambai A, Kamara BO, Kamara S, Bangura W, Monagin C, Shapira S, Johnson CK, Saylors K, Rubins EM, Chandran K, Lipkin WI, Mazet JAK. The discovery of the Bombali virus adds more support to bats as hosts for Ebolavirus. Nat Microbiol. 2018;3:1084-1089.
Available:https://doi.org/10.1038/s41564-018-0227-2

Kupferschmidt K. This bat species may be the source of the ebola epidemic that killed more than 11,000 People in West Africa; 2019.
Available:http://www.sciencemag.org/news/2019/01/bat-species-may-be-source-ebo la-epidemic-killed-more-11000-people-west-africa.
Access 15 Mai 2020.

Rovid A. Infecção pelo Vírus Hendra. Traduzido e adaptado a situação do Brasil por Mendes, R; 2019.
Available:http://www.cfsph.iastate.edu/ DiseaseInfo/factsheetspt.php? lang=pt
Access 20 Abr 2020.

Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652.
Available: https://doi:10.1038/nature09575

Trebbien R, Larsen LE, Viuff BM. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol. J. 2011;8:434.
Available: https://doi:10.1186/1743-422X- 8-434

Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Rasche A, Yordanov S, Seebens A, Oppong S, Sarkodie YA, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stöcker A, Carneiro AJ, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EK, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Krüger DH, Matthee S, Ulrich RG, Leroy EM, Drosten C. Bats host major mammalian paramyxoviruses. Nat Commun. 2012;24;3:796.
Available:https://doi:10.1038/ncomms1796

Vidal J. Habitat destruction creates ideal conditions for the emergence of the coronavirus - Scientific American Brasil. Nastari Editores; 2020.
Available:https://sciam.uol.com.br/destruicao-de-habitats-cria-condicoes-ideais-para-o-sur-gimento-do-coronavirus/
Access 17.04.2020.

World Health Organization. WHO 2017. guidance for surveillance during an influenza pandemic. Updatel; 2017.
Available:https://apps.who.int/iris/bitstream/handle/10665/259886/9789241513333-eng.pdf;jsessionid=F5935D7D225CE1 DD2CE3A6 48E3CB6317?sequence=1
Access 22 Abr 2020.

Wong S, Lau S, Woo P, Yuen KY. Bats as a continuing source of emerging infections in humans. Rev Med Virol. 2007;17(2):67–91.
Available: https://doi:10.1002/rmv.520

ICTV. International committee on taxonomy of viruses. ICTV Master Species List 2019.v1. EC 51, Berlin, Germany, July 2019. Ratification by email, March 2020 (MSL # 35); 2020.
Available: https://talk.ictvonline.org/taxo nomy/
Access on 20 Aug 2020.

Schutze H. Coronavirus in aquatic organisms. Aquaculture virology. FSB. Kibenge and Godoy MG, Elsevier Inc. 2016;1:327-335.
Available: https://doi.org/10.1016/B978-0-12-801573-5.00020-6

Baltimore D. Expression of animal virus genomes. Bact Rev. 1971;35(3):235.

Barbosa CM, Durigon EL, Thomazelli LM, Ometto T, Marcatti, R Nardi MS, Aguiar DM, Pinho JB, Petry, MV, Neto IS, Serafini P, Rodrigues RC, Azevedo Junior SM, Góes LGB, Araújo J. Divergent coronavirus detected in wild birds in Brazil, including a central park in São Paulo. Braz J Microbiol. 2019;50:547–556.
Available:https://doi.org/10.1007/s42770-019-00065-7

MacLachlan NJ, Dubovi EJ. In: MacLachlan NJ, Dubovi EJ, eds. Fenner's Veterinary Virology. 5th ed. Cambridge, MA: Academic Press. 2017;393‐413.

Woo PCY, Lau SKP, Lam CSF, Tsang AKL, Hui SW, Fan RYY. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in gamma coronavirus. J. Virol. 2014;88:1318–1331.
Available:https://doi:10.1128/ JVI.02351-13

Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol 2008;82:5084–5088.
Available:https//doi: 10.1128/JVI.02722-07

Dong BQ, Liu W, Fan XH, Vijaykrishna D, Tang XC, Gao F, Li LF, Li GJ, Zhang JX, Yang LQ, Poon LL, Zhang SY, Peiris JS, Smith GJ, Chen H, Guan Y. Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China. J Virol 2007; 81:6920–6926.
Available: https://doi:10.1128/JVI.00299-07

Woo PCY, Lau SK, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng BJ, Chan KH, Yuena KY. Discovery of seven novel mammalian and avian coronavirus in the genus deltacoronavirus supports bat coronavirus as the gene source of alphacoronavirus and betacoronavirus and avian coronavirus as the gene source of gammacoronavirus and deltacoronavirus. J Virology. 2012;3995-4008.
Available: https://doi:10.1128/JVI.06540-11

Woo PC, Lau SK, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood). 2009;234(10):1117-27.
Available: https://doi:10.3181/0903-MR-94

Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005;102:14040–45.
Available: https://doi:10.1073/pnas.05067 35102

Lim YX, Ng YL, Tam JP, Liu DX. Human coronavirus: A review of virus-host interactions. Diseases. 2016;4(3).
Available:https://doi:10.3390/diseases4030026

Gaunt ER, Hardie A, Claas EC, Simmonds P. Templeton KE. Epidemiology and clinical presentations of the four human coronavirus 229E, HKU1, NL63, and OC43 Detected over 3 Years using a novel multiplex real-time PCR Method down-pointing small open triangle. J Clin Microbiol. 2010;48(8):2940–2947.
Available:https:// doi:10.1128/JCM.00636-10

Ji W, Wang W, Zhao X, Zai J, Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol; 2020.
Available:https://doi: 10.1002/jmv.25682

Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronavirus. Virol J. 2015;12:221.
Available:https://doi:10.1186/s12985-015-0422-1

World Health Organization. Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS). Geneva; 2003.
Available:https://apps.who.int/iris/bitstream/handle/10665/70863/WHO_CDS_CSR_GAR_2003.11_eng.pdf?sequence=1&isAllowed=y
Access 21 Abr 2020.

Botto Nuñez B, Becker DJ, Plowright RK. The emergence of vampire bat rabies in Uruguay within a historical context. Epidemiology and Infection. 2019;147: 1801–8.
Available:https://doi.org/10.1017/S0950268819000682

Cui J, Li F, Shi Z. Origin and evolution of pathogenic coronavirus. Nat Rev Microbiol, 2019;17:181–192.
Available:https://doi.org/10.1038/s41579-018-0118-9.

Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology; 2020.
Available:https://doi:10.1016/j.cub.2020.05.023

Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JL, Webb CT. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci. 2013;7;280(1756): 20122753.
Available:https://doi:10.1098/rspb.2012.2753

Lovato LT, Dezengrini R. Coronaviridae. In "Virologia Veterinária" (E. Flores, Ed.), Ed. UFSM, Santa Maria. 2007;888.

Takiuchi E, Barreiros MAB, Alfieri AF, Alfieri AA. Identification of a mutation in the spike protein cleavage site in Brazilian strains of wild-type bovine coronavirus. Braz. J. microbiol. 2007;38(4):699-703.
Available:https://doi.org/10.1590/S1517-83822007000400021

Wan Y, Shang J, Grahan S, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of sars coronavirus. Virology 2020;94(7):1-9.
Available:https://doi: 10.1128/JVI.00127-2

Fam BSO, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-Cov-2. Genetics and Molecular Biology; 2020.
Available:https://file:///C:/Users/Usu%C3%A1rio/Downloads/34-Preprint%20Text-36-1-10-20200411.pdf
Access 25 Abr 2020.

Ji W, Wang W, Zhao X, Zai J, Li X. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. J Med Virol. 2020(b):433-440.
Available:https://doi.org/10.1002/jmv.25682

Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. Bats Are Natural Reservoirs of SARS-Like Coronavirus. Science 2005;310: 676-679.
Available:https://doi:10.1126/science.1118391

Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB. Metagenomic analysis of the viromes of three North American bat species: Viral diversity among different bat species that share a common habitat. J. Virol. 2010; 84:(24);13004-13018.
Available:https://doi:10.1128/JVI.01255-10

Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, Hutchison SK, Egholm M, Osinubi MO, Niezgoda M, Ogunkoya AB, Briese T, Rupprecht CE, Lipkin WI. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio. 2010;1(4):208-210.
Available:https://doi:10.1128/mBio.00208-10

Reusken CB, Lina PH, Pielaat A, De Vries A, Damdeisz C, Adema J, Drexler JF, Drosten C, Kooi EA. Circulation of group 2 coronavirus in a bat species common to urban areas in Western Europe. Vector. Borne. Zoonotic. Dis. 2010;10(8):785-791.
Available:https://doi:10.1089/vbz.2009.0173

Brandão PE, Scheffer K, Villarreal LY, Achkar S, Oliveira Rde N, Fahl Wde O, Castilho JG, Kotait I, Richtzenhain LJ. A coronavirus detected in the vampire bat Desmodus rotundus. Braz. J. Infect. Dis. 2008;12(6):466-458.
Available: https://doi.org/10.1590/S1413-86702008000600003

Carrington CV, Foster JE, Zhu HC, Zhang JX, Smith GJ, Thompson N, Auguste AJ, Ramkissoon V, Adesiyun AA., Guan Y. Detection and phylogenetic analysis of group 1 coronavirus in South American bats. Emerg. Infect. Dis. 2008;14(12): 1890-1893.
Available: https://doi:10.3201/eid1412.080 642

Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PB, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009; 5(7):e1000536.
Available: https://doi.org/10.1371/journal. ppat.1000536.

Moratelli R,Crus-Neto AP, Filardy A. Deadly vírus and Bats. Ciência Hoje. Ed. 364; 2020.
Available: https://cienciahoje.org.br/artigo/ morcegos-e-virus-mortais/
Access 20 Abr 2020

Zhou P, Yang XL Wang XG, Hu B, Zhang L Zhang W Si HR, Zhu Y, Li B Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
Available: https://doi.org/10.1038/s41586-020-2012-7

Wang H, Liu S, Zhang B, Wei W. Analysis of synonymous codon usage bias of Zika virus and its adaption to the hosts. PLoS One. 2016;11:e0166260.
Available:https://doi:10.1371/journal.pone.0166260

Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, warts, or asymptomatic infections: Clinical presentation matches codon usage preferences in human Papillomaviruses. Genome Biology and Evolution. 2015;7(8): 2117-35.
Available: https://doi:10.1093/gbe/evv129

World Health Organization. WHO 2019. Coronavirus; 2019.
Available:https://www.who.int/health‐topics/coronavirus
Access 16 Abr 2020.

Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, Alhakeem R, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI. middle east respiratory syndrome coronavirus in bats, Saudi Arabia. Emerging Infectious Diseases. 2013; 19(11):1819-23.
Available: https://doi:10.3201/eid1911.13 1172

Lei M, Donga D. Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci Rep. 2016, 6:27726.
Available: https://doi:10.1038/srep27726

Garbino GST, Gregorin R, Lima IP, Loureiro L, Moraes LM, Moratelli R, Nogueira MR, Pavan AC, Tavares VC, Peracchi AL. Updated checklist of Brazilian bats: version 2020. Brazilian Bat List Committee. CLMB. Brazilian Society for the Study of Chiropterans (SBEQ); 2020.
Access in 05 Out 2020.
Available:https://www.sbeq.net/lista-de-especies

Farneda FZ, Rocha R, López-Baucells A, Groenenberg M, Silva I, Palmeirim JM, Bobrowiec PED, Meyer CFJ. Trait-related responses to habitat fragmentation in Amazonian bats. J Ap Ecol. 2015;52: 1381–1391.
Available: https://doi.org/10.1111/1365-26 64.12490

Kotait I, Carrieri ML, Carnieli-Jr P. Castilho JG, Oliveira RN, Macedo CI, Scheffer KC, Achkar SM. Wildlife reservoirs of rabies virus: A new challenge to a public health. Paulista Epidemiological Bulletin. 2007; 4(40):2-8.

Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends in Microbiology. 2013:21:10.
Available: http://dx.doi.org/10.1016/j.tim. 2013.05.005

Mello MAR, Felix, GM, Pinheiro RBP, Muylaert RL, Geiselman C, Santana SE Tschapka M, Lotfi N, Rodrigues FA, Stevens RD. Insights into the assembly rules of a continent-wide multilayer network. Nat Ecol Evol. 2019;3:1525–1532.
Available:https://doi:10.1038/s41559-019-1002-3

Aodha OM, Gibb R, Barlow KE, Browning E, Firman M, Freeman R, Harder B, Kinsey L, Meda GR, Newson SE, Pandourski I, Parsons S, Russ J, Szodoray-Paradi A, Szodoray-Paradi F, Girolami M, Browtow G, Jone KE. Bat detective - Deep learning tools for bat acoustic signal detection. PLOS Computational Biology; 2018.
Available:https://doi.org/10.1371/journal.pcbi.1005995

Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;25:339(6118): 456-60.
Available: https://doi:10.1126/science.12 30835.

Fiels HE. Bats and emerging zoonoses: Henipaviruses and SARS. Review Zoonoses Public Health. 2009;56(6-7):278-84.
Available: https://doi:10.1111/j.1863-2378. 2008.01218.x

Jackwood MW. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronavirus. Avian Dis. 2006; 50(3):315-20.
Available:https://doi:10.1637/7612042006R.1

Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 2002; 8:1468–1473.
Available:https://doi:10.3201/eid0812.010317

O’Shea TJ, Cryan PM, Andrew A. Cunningham AR. Fooks DTS. Hayman AD. Luis AJP, Plowright RK, Wood JLN. Bat flight and zoonotic viruses. Emerg Infect Dis. 2014;20(5):741–745.
Available:https://doi:10.3201/eid2005.130539

Trivedi J, Lachapelle J, Vanderwolf KJ, Misra V, Willis CKR, Ratcliffe JM, Ness RW, Anderson JB, Kohna LM. Fungus causing white-nose syndrome in bats accumulates genetic variability in North America with No Sign of Recombination. mSphere 2019;2(4):e00271-17.
Available:https://doi.org/10.1128/mSphere Direct.00271-17

Lemieux-Labonté V, Simard A, Willis CKR, Lapointe FJ. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome. 2017;5:115.
Available:https://doi:10.1186/s40168-017-0334-y

USA. Bats affected by WNS/White Nose Syndrome. White Nose Syndrome Response Team. U.S. Fish & Wildlife Service; 2019.
Available:https://www.whitenosesyndrome.org/static-page/bats-affected-by-wns
Access 19 Mai 2020.

Goodal J. COVID-19 Should Make Us Rethink Our Destructive Relationship With the Natural World. Slate; 2020.
Available:https://slate.com/technology/2020/04/jane-goodall-coronavirus-species.html
Access 23 Abr 2020.

Reis NR, Perachi AL, Pedro WA, Lima IP. Morcegos do Brasil. Londrina. 2007;253.
Available:http://www.uel.br/pos/biologicas/pages/arquivos/pdf/Morcegos_do_Bra sil.pdf

BRAZIL. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Resources. Normative Instruction No. 141, of December 19, 2006. Regulates the control and environmental management of harmful synanthropic fauna. Official Gazette of the Federative Republic of Brazil, Brasília, DF, 20 dez. 2006;139-140.
Available:http://arquivos.ambiente.sp.gov.br/fauna/2015/09/documentos_legislacao_25.pdf

BRAZIL. Red Book of Brazilian Fauna Threatened with Extinction: Volume I. Chico Mendes Institute for Biodiversity Conservation. 1.ed. Brasília, DF: ICMBio/MMA, 2018;492.
Available: https://www.icmbio.gov.br/portal /images/stories/comunicacao/publicacoes/ publicacoes-diversas/livro_vermelho_2018 _vol1.pdf
Access 28 Abr 2020.

Leal-Santos FA, Jacobina ACM, Oliveira MM, Santana MBA, Serra OP, Gonçalves AV, Garcês ARS, Thies SF, Slhessarenko RD, Dantas ESO, Leite-Jr DP. Species composition and fauna distribution of mosquitoes (Diptera: Culicidae) and its importance for vector-borne diseases in a rural area of Central Western - Mato Grosso, Brazil. EntomoBrasilis. 2017; 10(2):94-105.
Available: https://doi:10.12741/ebrasilis.v1 0i2.687

Sullivan MJP, Lewis SL, Affum-Baffoe K, et al. Long-term thermal sensitivity of Earth’s tropical forests. Science. 2020:368(6493): 869-874.
Available: https://doi:10.1126/science.aaw 7578

Daly N. Flying foxes are dying en masse due to extreme heat in Australia. National Geographic; 2020.
Available: https://www.nationalgeographic brasil.com/animais/2020/01/raposas-voa doras-estao-morrendo-em-massa-devido-ao-calor-extremo-na-australia
Access 2 1 Mai 2020

Cox L. Spectacled flying fox declared endangered after Queensland heatwave wipeout. The Guardian WildLife; 2019.
Available: https://www.theguardian.com/ environment/2019/feb/19/spectacled-flying-fox-declared-endangered-after-queens land-heatwave-wipeout
Access 21 Mai 2020.

Ratnayake HU, Kearney MR, Govekar P, Kroly D, Welbergen JA. Forecasting wildlife die‐offs from extreme heat events. Animal Conservation. 2019;22(44): 386-95.
Available: https://doi.org/10.1111/acv.124 76

Ripperger SP, Stockmaier S, Carter GG. Tracking sickness effects on social encounters via continuous proximity sensing in wild vampire bats. Behavioral Ecology. 2020;1-7.
Available:https://doi.org/10.1093/beheco/araa111

Stadler K, Masignani V, Eichkmann M, Becker S, Abrignani S, Klenk HD, Rappuoli R. SARS - Beginning to understand a new virus. Nature Reviews. 2003;1:209-18.
Available:https://doi:10.1038/nrmicro775

World Health Organization. WHO 2020. Diseases Outbreak; 2020.
Available: https://www.who.int/emergenci es/diseases/en/
Access 03 Mai 2020.

Hays JN. Epidemics and pandemics. Their impacts on Human History. Austin, Texas: Fundação Kahle; 2005.

Tibayrenc M. Encyclopedia of infectious diseases: Modern Methodologies, Ed. Wiley & Sons, Inc., Hoboken, New Jersey, USA. 2007;747.